65.17 F
London
July 4, 2024
PI Global Investments
Precious Metals

Efficient recovery and recycling/upcycling of precious metals using hydrazide-functionalized star-shaped polymers


  • Yeo, K. M., Choi, S., Anisur, R. M., Kim, J. & Lee, I. S. Surfactant-free platinum-on-gold nanodendrites with enhanced catalytic performance for oxygen reduction. Angew. Chem., Int. Ed. 50, 745–748 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Miao, S. & Deng, Y. Au−Pt/Co3O4 catalyst for methane combustion. Appl. Catal., B 31, L1–L4 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Sakthivel, S, Shankar, M., Palanichamy, M., Arabindoo, B., Bahnemann, D. & Murugesan, V. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38, 3001–3008 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, F., Du, C., Ye, J., Chen, G., Du, L. & Yin, G. Selective surface engineering of heterogeneous nanostructures: in situ unraveling of the catalytic mechanism on Pt−Au catalyst. ACS Catal. 7, 7923–7929 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y., Qiao, Q., Cao, J., Li, H. & Bian, Z. Precious metal recovery. Joule 5, 3097–3115 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C.-c. & Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 141, 284–298 (2019).

  • Sun, D. T., Gasilova, N., Yang, S., Oveisi, E. & Queen, W. L. Rapid, selective extraction of trace amounts of gold from complex water mixtures with a metal−organic framework (MOF)/polymer composite. J. Am. Chem. Soc. 140, 16697–16703 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Super-stable, highly efficient, and recyclable fibrous metal–organic framework membranes for precious metal recovery from strong acidic solutions. Small 15, 1805242 (2019).

  • Lahtinen, E. et al. Porous 3D printed scavenger filters for selective recovery of precious metals from electronic waste. Adv. Sustain. Syst. 2, 1800048 (2018).

  • Kasper, A. C., Veit, H. M., García-Gabaldón, M. & Herranz, V. P. Electrochemical study of gold recovery from ammoniacal thiosulfate, simulating the PCBs leaching of mobile phones. Electrochim. Acta 259, 500–509 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Papaiconomou, N., Vite, G., Goujon, N., Lévêque, J.-M. & Billard, I. Efficient removal of gold complexes from water by precipitation or liquid−liquid extraction using ionic liquids. Green. Chem. 14, 2050–2056 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kinsman, L. M. M., Ngwenya, B. T., Morrison, C. A. & Love, J. B. Tuneable separation of gold by selective precipitation using a simple and recyclable diamide. Nat. Commun. 12, 6258 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. MXene-carbon nanotube hybrid membrane for robust recovery of Au from trace-level solution. ACS Appl. Mater. Interfaces 12, 43032–43041 (2020).

  • Yang, F., Yan, Z., Zhao, J., Miao, S., Wang, D. & Yang, P. Rapid capture of trace precious metals by amyloid-like protein membrane with high adsorption capacity and selectivity. J. Mater. Chem. A 8, 3438–3449 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chang, Z. et al. Adsorptive recovery of precious metals from aqueous solution using nanomaterials − A critical review. Coord. Chem. Rev. 445, 214072 (2021).

  • Guo, J., Wu, Y., Wang, Z., Yu, J. & Li, J.-R. Review: adsorbents for the recovery of precious metals from wastewater. J. Mater. Sci. 57, 10886–10911 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bratskaya, S., Privar, Y., Ustinov, A., Azarova, Y. & Pestov, A. Recovery of Au(III), Pt(IV), and Pd(II) using pyridylethyl-containing polymers: Chitosan derivatives vs synthetic polymers. Ind. Eng. Chem. Res. 55, 10377–10385 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mao, J., Lee, S. Y., Won, S. W. & Yun, Y.-S. Surface modified bacterial biosorbent with poly(allylamine hydrochloride): Development using response surface methodology and use for recovery of hexachloroplatinate(IV) from aqueous solution. Water Res 44, 5919–5928 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Covalent organic frameworks constructed by flexible alkyl amines for efficient gold recovery from leaching solution of e-waste. Chem. Eng. J. 426, 131865 (2021).

  • Jung, Y., Do, T., Choi, U. S., Jung, K.-W. & Choi, J.-W. Cage-like amine-rich polymeric capsule with internal 3D center-radial channels for efficient and selective gold recovery. Chem. Eng. J. 438, 135618 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qin, Z., Deng, H., Huang, R. & Tong, S. 3D MXene hybrid architectures for the cold-resistant, rapid and selective capture of precious metals from electronic waste and mineral. Chem. Eng. J. 428, 132493 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Won, S. W., Kim, S., Kotte, P., Lim, A. & Yun, Y.-S. Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt(IV) recovery from acidic solutions. J. Hazard. Mater. 263, 391–397 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, S. & Rajesh, N. Augmenting the adsorption of palladium from spent catalyst using a thiazole ligand tethered on an amine functionalized polymeric resin. Chem. Eng. J. 283, 999–1008 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jung, Y., Choi, U. S. & Ko, Y. G. Nanofibrous spherical cage mimicking a ball of pearl necklaces for super capture of heavy metal ions. J. Mater. Chem. A 9, 17281 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, B. et al. Triazine-crosslinked polyethyleneimine for efficient adsorption and recovery of gold from wastewater. J. Mol. Liq. 367, 120586 (2022).

  • Jo, J. H. et al. Star polymer-assembled adsorptive membranes for effective Cr (VI) removal. Chem. Eng. J. 449, 137883 (2022).

  • Okesola, B. O., Suravaram, S. K., Parkin, A. & Smith, D. K. Selective extraction and in situ reduction of precious metal salts from model waste to generate hybrid gels with embedded electrocatalytic nanoparticles. Angew. Chem. 128, 191–195 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Li, H., Ye, M., Zhang, H., Wang, G. & Zhang, Y. Bacterial cellulose hybrid membrane grafted with high ratio of adipic dihydrazide for highly efficient and selective recovery of gold from e-waste. Sep. Purif. Technol. 292, 121021 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Designing a reductive hybrid membrane to selectively capture noble metallic ions during oil/water emulsion separation with further function enhancement. J. Mater. Chem. A 6, 10217 (2018).

  • Fraenkel, G. & Franconi, C. Protonation of amides. J. Am. Chem. Soc. 82, 4478–4483 (1960).

    Article 
    CAS 

    Google Scholar
     

  • Ginés, L., Mandal, S., Ahmed, A.-I., Cheng, C.-L., Sow, M. & Williams, O. A. Positive zeta potential of nanodiamonds. Nanoscale 9, 12549 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Garrido, P., Concha, F. & Bürger, R. Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions. Int. J. Miner. Process 72, 57–74 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Smith, J. G. Organic chemistry 4th edition (McGraw-Hill, 2014).

  • Reddy, D. H. K., Wei, W., Shuo, L., Song, M.-H. & Yun, Y.-S. Fabrication of stable and regenerable amine functionalized magnetic nanoparticles as a potential material for Pt(IV) recovery from acidic solutions. ACS Appl. Mater. Interfaces 9, 18650–18659 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunder, A., Mülhaupt, R., Haag, R. & Frey, H. Hyperbranched polyether polyols: A modular approach to complex polymer architectures. Adv. Mater. 12, 3 (2000).

    Article 

    Google Scholar
     

  • Jeon, S., Park, C. H., Shin, S. S. & Lee, J.-H. Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers. J. Membr. Sci. 611, 118415 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Masuda, T., Ohta, Y., Yamauchi, T. & Onogi, S. Characterization and rheological properties of multi-branched star polystyrenes. Polym. J. 16, 273–291 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Jeon, S., Shin, S. S., Park, C. H. & Lee, J.-H. Star polymer-mediated in-situ synthesis of silver-incorporated reverse osmosis membranes with excellent and durable biofouling resistance. J. Membr. Sci. 639, 119778 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Synthesis and enhanced electrocatalytic properties of Au/Pd/Pt nanohollows. Mater. Lett. 157, 15–18 (2015).

  • Xavier, S. & Periandy, S. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations. Spectrochim. Acta, Part A 149, 216–230 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aghaei, E., Alorro, R. D., Encila, A. N. & Yoo, K. Magnetic adsorbents for the recovery of precious metals from leach solutions and wastewater. Metals 7, 529 (2017).

    Article 

    Google Scholar
     

  • Yaremenko, I. A. et al. Cascade assembly of bridged N-substituted azaozonides: the counterintuitive role of nitrogen source nucleophilicity. Org. Lett. 24, 6582–6587 (2022).

  • Lin, S. et al. Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal − organic frameworks from strongly acidic solutions. J. Mater. Chem. A 5, 13557–13564 (2017).

  • Ain, Q. U., Ashiq, U., Jamal, R. A. & Mahrooof-Tahir, M. Synthesis, spectroscopic and radical scavenging studies of palladium(II)-hydrazide complexes. Spectrochim. Acta, Part A 115, 683–689 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mosai, A. K., Chimuka, L., Cukrowska, E. M., Kotzé, I. A. & Tutu, H. The recovery of Platinum (IV) from aqueous solutions by hydrazine-functionalised zeolite. Miner. Eng. 13, 304–312 (2019).

    Article 

    Google Scholar
     

  • Zhou, L., Liu, J. & Liu, Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J. Hazard. Mater. 172, 439–446 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rietra, R. P., Hiemstra, T. & van Riemsdijk, W. H. Interaction between calcium and phosphate adsorption on goethite. Environ. Sci. Technol. 35, 3369–3374 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurung, M., Adhikari, B. B., Alam, S., Kawakita, H., Ohto, K. & Inoue, K. Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chem. Eng. J. 228, 405–414 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gurung, M. et al. N-aminoguanidine modified persimmon tannin: A new sustainable material for selective adsorption, preconcentration and recovery of precious metals from acidic chloride solution. Bioresour. Technol. 129, 108–117 (2013).

  • Wei, W., Cho, C.-W., Kim, S., Song, M.-H., Bediako, J. K. & Yun, Y.-S. Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid − liquid extraction using ionic liquid Aliquat-336. J. Mol. Liq. 216, 18–24 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Al-Ghouti, M. A. & Da’ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 393, 122383 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. & Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y., Lan, L., Li, X., Liu, X., Ying, Y. & Ping, J. Alchemy-inspired green paper for spontaneous recovery of noble metals. Small 16, 1907282 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. P. & Lim, L. L. Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49, 363–370 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yu, F., Yang, C., Zhu, Z., Bai, X. & Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 694, 133643 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Korley, L. T., Epps, T. H. III, Helms, B. A. & Ryan, A. J. Toward polymer upcycling−adding value and tackling circularity. Science 373, 66–69 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sargin, I., Baran, T. & Arslan, G. Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep. Purif. Technol. 247, 116987 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ruan, M., Song, P., Liu, J., Li, E. & Xu, W. Highly efficient regeneration of deactivated Au/C catalyst for 4‑nitrophenol reduction. J. Phys. Chem. C. 121, 25882–25887 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ren, Y., Mao, X. & Hatton, T. A. An asymmetric electrochemical system with complementary tunability in hydrophobicity for selective separations of organics. ACS Cent. Sci. 5, 1396–1406 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz, L. A., Lister, T. E., Parkman, J. A. & Clark, G. G. Comprehensive process for the recovery of value and critical materials from electronic waste. J. Clean. Prod. 125, 236–244 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Stefánsson, A. Iron(III) hydrolysis and solubility at 25 °C. Environ. Sci. Technol. 41, 6117–6123 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, S. N. et al. Solution-processed Cu2ZnSnS4 absorbers prepared by appropriate inclusion and removal of thiourea for thin film solar cells. RSC Adv. 4, 9118–9125 (2014).

  • Jung, Y., Yoon, S.-J., Byun, J., Jung, K.-W. & Choi, J.-W. Visible-light-induced self-propelled nanobots against nanoplastics. Water Res. 244, 120543 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related posts

    A Prelude to a Bullish Gold and Silver Market

    D.William

    5 Copper ETFs to Consider on Bullish Demand Forecasts — TradingView News

    D.William

    Blue Moon Metals Inc. to Present at the Battery & Precious Metals Virtual Investor Conference January 31, 2024

    D.William

    Leave a Comment

    * By using this form you agree with the storage and handling of your data by this website.