PI Global Investments
Silver

Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue

  • Salah Salem, S. et al. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 13(1), 41. https://doi.org/10.33263/BRIAC131.041 (2022).

    Article 

    Google Scholar
     

  • Agarwal, H., Nakara, A. & Shanmugam, V. K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 109, 2561–2572. https://doi.org/10.1016/j.biopha.2018.11.116 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kolahalam, L. A. et al. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 18, 2182–2190. https://doi.org/10.1016/j.matpr.2019.07.371 (2019).

    Article 

    Google Scholar
     

  • Golinska, P. et al. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl. Microbiol. Biotechnol. 98(19), 8083–8097. https://doi.org/10.1007/s00253-014-5953-7 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Slepička, P., Kasálková, N. S., Siegel, J., Kolská, Z. & Švorčík, V. Methods of gold and silver nanoparticles preparation. Materials 13(1), 1. https://doi.org/10.3390/ma13010001 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Halwani, A. A. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 14(1), 106. https://doi.org/10.3390/pharmaceutics14010106 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alayande, A. B. et al. Antiviral nanomaterials for designing mixed matrix membranes. Membranes 11(7), 458. https://doi.org/10.3390/membranes11070458 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, S. S., Ali, O. M., Reyad, A. M., Abd-Elsalam, K. A. & Hashem, A. H. Pseudomonas indica-mediated silver nanoparticles: Antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. J. Fungi https://doi.org/10.3390/jof8020126 (2022).

    Article 

    Google Scholar
     

  • Gola, D. et al. Silver nanoparticles for enhanced dye degradation. Curr. Res. Green Sustain. Chem. 4, 100132. https://doi.org/10.1016/j.crgsc.2021.100132 (2021).

    Article 

    Google Scholar
     

  • Karthik, C., Suresh, S., Sneha Mirulalini, G. & Kavitha, S. A FTIR approach of green synthesized silver nanoparticles by Ocimum sanctum and Ocimum gratissimum on mung bean seeds. Inorg. Nano-Metal Chem. 50(8), 606–612. https://doi.org/10.1080/24701556.2020.1723025 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Salem, S. S. & Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res. 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Al-Rajhi, A. M. H., Salem, S. S., Alharbi, A. A. & Abdelghany, T. M. Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arab. J. Chem. 15(7), 103927. https://doi.org/10.1016/j.arabjc.2022.103927 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ibrahim, S. et al. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci. Rep. 11(1), 1–18. https://doi.org/10.1038/s41598-020-80805-0 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, X. et al. Advantages of silver nanoparticles synthesized by microorganisms in antibacterial activity. Green Synth. Silver Nanomater. 1, 571–586. https://doi.org/10.1016/B978-0-12-824508-:8.00005-8 (2022).

    Article 

    Google Scholar
     

  • Shankar, S. S., Ahmad, A. & Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19(6), 1627–1631. https://doi.org/10.1021/bp034070w (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Alsamhary, K. I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27(8), 2185–2191. https://doi.org/10.1016/j.sjbs.2020.04.026 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, M. et al. Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanosc. Res. Lett. https://doi.org/10.1186/s11671-019-3244-z (2020).

    Article 

    Google Scholar
     

  • Salem, S. S. et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10(10), 1–20. https://doi.org/10.3390/nano10102082 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cueva, M. E. & Horsfall, L. E. The contribution of microbially produced nanoparticles to sustainable development goals. Microb. Biotechnol. 10(5), 1212. https://doi.org/10.1111/1751-7915.12788 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohd Yusof, H., Mohamad, R., Zaidan, U. H. & Abdul Rahman, N. A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 10(1), 1–22. https://doi.org/10.1186/s40104-019-0368-z (2019).

    CAS 
    Article 

    Google Scholar
     

  • El-Belely, E. F. et al. Green synthesis of zinc oxide nanoparticles (Zno-nps) using Arthrospira platensis (class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials 11(1), 1–18. https://doi.org/10.3390/nano11010095 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hoang, V. T. et al. Functionalized silver nanoparticles-based efficient colorimetric platform: Effects of surface capping agents on the sensing response of thiram pesticide in environmental water samples. Mater. Res. Bull. 139, 111278. https://doi.org/10.1016/j.materresbull.2021.111278 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Silambarasan, S. & Abraham, J. Biosynthesis of silver nanoparticles using the bacteria Bacillus cereus and their antimicrobial property. Int. J. Pharm. Pharm. Sci. 4(SUPPL 1), 536–540 (2012).

    CAS 

    Google Scholar
     

  • GemeelAbd, F., Mohsen, L. Y., Al-Shalah, L. A. M. & Alkaim, A. F. Silver nanoparticles synthesized by using Pseudomonas aeruginosa synergistically act with antibiotic. Asian J. Microbiol. Biotechnol. Environ. Sci. 20, S50–S52 (2018).


    Google Scholar
     

  • Netala, V. R. et al. Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system). Artif. Cells Nanomed. Biotechnol. 46(suppl 1), 1138–1148. https://doi.org/10.1080/21691401.2018.1446967 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tanase, C. et al. Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract. Nanomaterials 9(11), 1541. https://doi.org/10.3390/nano9111541 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ameen, F. et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct. 1202, 127233. https://doi.org/10.1016/j.molstruc.2019.127233 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shankar, T., Karthiga, P., Swarnalatha, K. & Rajkumar, K. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resour. Efficient Technol. 3(3), 303–308. https://doi.org/10.1016/j.reffit.2017.01.004 (2017).

    Article 

    Google Scholar
     

  • Das, G., Patra, J. K., Debnath, T., Ansari, A. & Shin, H. S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS ONE 14(8), 1–19. https://doi.org/10.1371/journal.pone.0220950 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gopinath, V. & Velusamy, P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta A 106, 170–174. https://doi.org/10.1016/j.saa.2012.12.087 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shaban, M. et al. Preparation and characterization of polyaniline and ag/polyaniline composite nanoporous particles and their antimicrobial activities. J. Polym. Environ. 26(2), 434–442. https://doi.org/10.1007/S10924-017-0937-1/FIGURES/6 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Shaban, M., Kholidy, I., Ahmed, G. M., Negem, M. & Abd El-Salam, H. M. Cyclic voltammetry growth and characterization of Sn–Ag alloys of different nanomorphologies and compositions for efficient hydrogen evolution in alkaline solutions. RSC Adv. 9(39), 22389–22400. https://doi.org/10.1039/C9RA03503F (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, H. S. H. et al. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. J. Mater. Sci. Technol. 83, 179–187. https://doi.org/10.1016/J.JMST.2020.12.052 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mohamed, F. et al. Design and characterization of a novel ZnO–Ag/polypyrrole core-shell nanocomposite for water bioremediation. Nanomaterials 11(7), 1688. https://doi.org/10.3390/NANO11071688 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atta, A. et al. Structural and physical properties of polyaniline/silver oxide/silver nanocomposite electrode for supercapacitor applications. Int. J. Energy Res. 46(5), 6702–6710. https://doi.org/10.1002/ER.7608 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Bamal, D. et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials 11(8), 2086. https://doi.org/10.3390/nano11082086 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klaus, T., Joerger, R., Olsson, E. & Granqvist, C. G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96(24), 13611–13614. https://doi.org/10.1073/pnas.96.24.13611 (1999).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai, M. P., Patil, R. V. & Pawar, K. D. Selective and sensitive colorimetric detection of platinum using Pseudomonas stutzeri mediated optimally synthesized antibacterial silver nanoparticles. Biotechnol. Rep. 25, e00404. https://doi.org/10.1016/J.BTRE.2019.E00404 (2020).

    Article 

    Google Scholar
     

  • Das, V. L. et al. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4(2), 121–126. https://doi.org/10.1007/s13205-013-0130-8 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Almeida, S. et al. Exploration of nitrate reductase metabolic pathway in Corynebacterium pseudotuberculosis. Int. J. Genom. https://doi.org/10.1155/2017/9481756 (2017).

    Article 

    Google Scholar
     

  • Wang, X., Lee, S.-Y., Akter, S. & Huq, M. A. Probiotic-mediated biosynthesis of silver nanoparticles and their antibacterial applications against pathogenic strains of Escherichia coli O157:H7. Polymers 14(9), 1834. https://doi.org/10.3390/POLYM14091834 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, H., Du, J., Singh, P. & Yi, T. H. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. J. Pharm. Anal. 8(4), 258–264. https://doi.org/10.1016/J.JPHA.2018.04.004 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Waterhouse, G. I. N., Chen, Y., Sun-Waterhouse, D. & Li, D. Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol. Adv. 55, 107914. https://doi.org/10.1016/j.biotechadv.2022.107914 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Alamri, S. A. M. et al. Controllable biogenic synthesis of intracellular silver/silver chloride nanoparticles by Meyerozyma guilliermondii KX008616. J. Microbiol. Biotechnol. 28(6), 917–930. https://doi.org/10.4014/JMB.1802.02010 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Siddiqi, K. S., Husen, A. & Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. https://doi.org/10.1186/s12951-018-0334-5 (2018).

    Article 

    Google Scholar
     

  • SalasOrozco, M. F., Niño-Martínez, N., Martínez-Castañón, G. A., Méndez, F. T. & Ruiz, F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int. J. Mol. Sci. 20(11), 2808. https://doi.org/10.3390/IJMS20112808 (2019).

    Article 

    Google Scholar
     

  • Mols, M., De Been, M., Zwietering, M. H., Moezelaar, R. & Abee, T. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environ. Microbiol. 9(12), 2933–2944. https://doi.org/10.1111/j.1462-2920.2007.01404.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Singh, J. & Dhaliwal, A. S. Effective removal of methylene blue dye using silver nanoparticles containing grafted polymer of guar gum/acrylic acid as novel adsorbent. J. Polym. Environ. 29(1), 71–88. https://doi.org/10.1007/s10924-020-01859-9 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Loiseau, A. et al. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 9(2), 1–40. https://doi.org/10.3390/bios9020078 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Abdulwahab, F., Henari, F. Z., Cassidy, S. & Winser, K. Synthesis of Au, Ag, Curcumin Au/Ag, and Au–Ag nanoparticles and their nonlinear refractive index properties. J. Nanomater. https://doi.org/10.1155/2016/5356404 (2016).

    Article 

    Google Scholar
     

  • Patil, R. B. & Chougale, A. D. Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Mater. Today Proc. 47, 5520–5532. https://doi.org/10.1016/j.matpr.2021.03.384 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Basyooni, M. A., Ahmed, A. M. & Shaban, M. Plasmonic hybridization between two metallic nanorods. Optik 172, 1069–1078. https://doi.org/10.1016/J.IJLEO.2018.07.135 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Firdhouse, M. J. & Lalitha, P. Biosynthesis of silver nanoparticles and its applications. J. Nanotechnol. https://doi.org/10.1155/2015/829526 (2015).

    Article 

    Google Scholar
     

  • Wagi, S. & Ahmed, A. Green production of AgNPs and their phytostimulatory impact. Green Process. Synth. 8(1), 885–894. https://doi.org/10.1515/gps-2019-0059 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Devaraj, P., Kumari, P., Aarti, C. & Renganathan, A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. https://doi.org/10.1155/2013/598328 (2013).

    Article 

    Google Scholar
     

  • Badmus, J. A. et al. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: Exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon 6(11), e05413. https://doi.org/10.1016/j.heliyon.2020.e05413 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • C. C. P. Eco-friendly approach for the green synthesis of silver nanoparticles using flower extracts of Sphagneticola trilobata and study of antibacterial activity. J. Int. J. Pharm. Biol. Sci. 2, 2230–7605 (2018).


    Google Scholar
     

  • Prakash, A., Sharma, S., Ahmad, N., Ghosh, A. & Sinha, P. Synthesis of agnps by Bacillus cereus bacteria and their antimicrobial potential. J. Biomater. Nanobiotechnol. 02(02), 155–161. https://doi.org/10.4236/jbnb.2011.22020 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Vigneshwaran, N. et al. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61(6), 1413–1418. https://doi.org/10.1016/j.matlet.2006.07.042 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Sunkar, S. & Nachiyar, C. V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2(12), 953–959. https://doi.org/10.1016/S2221-1691(13)60006-4 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, V. T. et al. Scalable electrochemical synthesis of novel biogenic silver nanoparticles and its application to high-sensitive detection of 4-nitrophenol in aqueous system. Adv. Polym. Technol. https://doi.org/10.1155/2021/6646219 (2021).

    Article 

    Google Scholar
     

  • Le Nhat Trang, N. et al. Bio-AgNPs-based electrochemical nanosensors for the sensitive determination of 4-nitrophenol in tomato samples: The roles of natural plant extracts in physicochemical parameters and sensing performance. RSC Adv. 12(10), 6007–6017. https://doi.org/10.1039/d1ra09202b (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, D. S., El-Baky, R. M. A., Sandle, T., Mandour, S. A. & Ahmed, E. F. Antimicrobial activity of silver-treated bacteria against other multi-drug resistant pathogens in their environment. Antibiotics 9(4), 181. https://doi.org/10.3390/antibiotics9040181 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Primo, E. D., Otero, L. H., Ruiz, F., Klinke, S. & Giordano, W. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook. Biochem. Mol. Biol. Educ. 46(1), 83–90. https://doi.org/10.1002/bmb.21092 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mai-Prochnow, A., Clauson, M., Hong, J. & Murphy, A. B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6(1), 1–11. https://doi.org/10.1038/srep38610 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Majed, R., Faille, C., Kallassy, M. & Gohar, M. Bacillus cereus biofilms-same, only different. Front. Microbiol. 7, 1054. https://doi.org/10.3389/fmicb.2016.01054 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandian, S. R. K., Deepak, V., Kalishwaralal, K., Viswanathan, P. & Sangiliyandi, G. Mechanism of bactericidal activity of silver nitrate: A concentration dependent bi-functional molecule. Braz. J. Microbiol. 41(3), 805–809. https://doi.org/10.1590/S1517-83822010000300033 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Fageria, L. et al. Biosynthesized protein-capped silver nanoparticles induce ROS-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega 2(4), 1489–1504. https://doi.org/10.1021/acsomega.7b00045 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaban, M., Mustafa, M. & El Sayed, A. M. Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films: Influence of copper doping, annealing, and deposition parameters. Mater. Sci. Semicond. Process. 56, 329–343. https://doi.org/10.1016/J.MSSP.2016.09.006 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Shaban, M. & El Sayed, A. M. Influences of lead and magnesium co-doping on the nanostructural, optical properties and wettability of spin coated zinc oxide films. Mater. Sci. Semicond. Process. 39, 136–147. https://doi.org/10.1016/J.MSSP.2015.04.008 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Uddin, M. J. et al. Preparation of nanostructured TiO2-based photocatalyst by controlling the calcining temperature and pH. Int. Nano Lett. 2(1), 1–10. https://doi.org/10.1186/2228-5326-2-19 (2012).

    Article 

    Google Scholar
     

  • Ganapuram, B. R. et al. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by Salmalia malabarica gum. Int. Nano Lett. 5(4), 215–222. https://doi.org/10.1007/s40089-015-0158-3 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cheval, N., Gindy, N., Flowkes, C. & Fahmi, A. Polyamide 66 microspheres metallised with in situ synthesised gold nanoparticles for a catalytic application. Nanosc. Res. Lett. 7(1), 1–9. https://doi.org/10.1186/1556-276X-7-182 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Li, K., Luo, X., Lin, X., Qi, F. & Wu, P. Novel NiCoMnO4 thermocatalyst for low-temperature catalytic degradation of methylene blue. J. Mol. Catal. A. 383–384, 1–9. https://doi.org/10.1016/j.molcata.2013.11.017 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Balows, A. Manual of clinical microbiology 8th edition. Diagn. Microbiol. Infect. Dis. 47(4), 625–626. https://doi.org/10.1016/s0732-8893(03)00160-3 (2003).

    Article 
    PubMed Central 

    Google Scholar
     

  • Rasband, W. S. ImageJ (U. S. National Institutes of Health, 1997–2018). https://imagej.nih.gov/ij/.

  • Kordy, M. G. M. et al. Phyto-capped Ag nanoparticles: Green synthesis characterization, and catalytic and antioxidant activities. Nanomaterials 12(3), 373. https://doi.org/10.3390/nano12030373 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quirk, T. J. & Rhiney, E. Sample size, mean, standard deviation, and standard error of the mean. in Excel 2016 for Marketing Statistics, 1–20 (2016). https://doi.org/10.1007/978-3-319-43376-9_1.

  • Source link

    Related posts

    Capestro-Dubets Charges Ahead in Pro-Am; Geesbreght Quickest in Silver and Borcheller Tops Am in Practice 2

    Miles

    Honey Badger Silver Announces Completion of Summer Work Program at its Groundhog Property in South-Central Yukon

    Miles

    Silver Saddles connects seniors with horses in unique therapy opportunity

    Miles

    Leave a Comment

    SUBSCRIBE TO OUR NEWSLETTER

    Get our latest downloads and information first. Complete the form below to subscribe to our weekly newsletter.

      100% secure your website.